T ELEEE]
EEEmm s

| ‘, X . ggigégumumum Computing Egééééb C-EHT'E.HJ
: T TWTTE
Introduction To FastBit
Outline
» Background John Wu
Scientific Data Management

> Use cases

Berkeley Lab

» Bitmap indexes

» Library interface

http://sdm.lbl.gov/fastbit

. A
rerrrer ‘u||

BrRxELey Lam

Context

¢ Scientific applications are generating enormous amounts of data

¢ Only a relatively small fraction of data records contain
new/unusual/interesting information

¢ Challenge: find the interesting records quickly and repeatedly

¢ Solution strategies:
Hardware (parallelism): web search engine, hadoop

Software: e.g., database management systems, key
technologies include indexing, compression and query
optimization

Software and hardware hybrids, e.g., netezza

¢ This talk focus on an indexing software designed for scientific
applications

y

rrreerer |||'|
:::::: ' _

Characteristics of Scientific Data

¢ Data does not change!

Once the raw data is captured or computed, most scientific
data sets do not change.

¢ Analyses touch a relatively small number of variables in the data
Relevant records are selected based on a few variables
Analyses use a small number of variables as input

¢ Queries are ad hoc in nature, typically involving multi-
dimensional range conditions

Find collision events where Energy > 200 GeV and 1000 <
NumberOfParticles <2000 and ...

Find regions 1n space where temperature > 800 and H,O,
concentration > 107 and ...

y

rrreerer |||'|

IR L _

Common Indexes Not Efficient

Task: searching high-dimensional append-only data with ad hoc range
queries

“* Most tree-based indexes are designed to support updates

Examples: family of B-Trees

Efficient for small number of hits

Sacrifice some search performance to support updates
** Inverted indexes used in web searching engines not applicable

Most scientific data are numbers, while the inverted indexes are for text
¢+ Hash-based indexes are

Efficient for finding a small number of records

But, not efficient for ad hoc multi-dimensional queries

+¢* Most multi-dimensional indexes suffer from the
curse of dimensionality

Examples: R-tree, Quad-trees, KD-trees, ...
Don’t scale to high dimensions (< 10)
Are 1nefficient if some dimensions are not queried

.l'l'.l'l'l’l'l’ |||

4

*

000

o0

L)

FastBit Approach: Bitmap Index

Bitmap indexes
Sacrifice update efficiency to gain more search efficiency
Search results from multiple dimensions can be quickly combined
Scale linearly with the dimension of a query

Bitmap indexes may demand too much space

We solve the space problem by developing an efficient compression method
that

Reduces the index size, typically 30% of raw data, vs. 300% for some
common indexes

10X speedup relative to best known compressed bitmap index
Even higher speedup relative to conventional indexes
We have applied FastBit to speed up a number of DOE funded applications

[Wu, Otoo, Shoshani 2006] priict

5 N

Data Model

+» User data are viewed as tables

Rows — an observation, variables associated with a mesh
point, or other units of data

Columns — a variable, field, or other quantities, e.g.,
temperature, pressure, name, address

¢ Indexes may be built to accelerate query processing

— Data Table Bitmaps for A Bitmaps for B
A B C .. =0 =1 =2 ... <1 <2 <3
0 0.5 AL 1 0 0 1 1 1
3 0.3 AR 0 0 0 1 1 1
2 1.2 CA 0 0 1 0 1 1
1 3.4 CA 0 1 0 0 0 0
1 0.8 Wi 0 1 0 1 1 1 =

reerrer] il

FastBit Overview

* Task: given a large collection of data, efficiently
locate records satisfying a set of conditions
“* Example data — structured data:

High-energy physics data — billions of collision events,
with hundreds of variables

Simulation data on a mesh — each mesh point may be
viewed as a record/row, each variable a column

** Example queries:

Count how many records where pressure > 1000 and
temperature between 500 and 1000

Select all records where momentum > ...
¢ FastBit solves this search problem with

Column data organization

Bitmap index

¢ FastBit is an award-winning open-source software
library

R&D100 award (2008)
Used in a number of research projects

ainssaud

ainjeisadwa)
wnjuawouw

S
R

uqm[op

y

rrreerer |||'|

HERKELE _

What FastBit Is Not

® Not a database management system (DBMS)
It 1s much closer to BigTable than to ORACLE
Most SQL commands are not supported
% Not a plug-in for a DBMS
It 1s a stand-alone data processing tool
No DBMS i1s needed in order to use FastBit
® Not an internet search engine

FastBit 1s primarily for structured data; internet search
engines are for text (unstructured) data

® Not a client-server system

We have used FastBit in server programs, but by itself, it is
not a client-server system

y

freeerer |||"

_

01001001111,
.':_; -

Introduction To FastBit

Outline
> John Wu
Scientific Data Management

> Use cases Berkeley Lab
>
>

http://sdm.Ibl.gov/fastbit .

p q _r_::>| ‘l:;

U

Use Case 1: Query Driven Visualization

FastBit Joint work with Vis group
Q [Stockinger, Shalf, Bethel, Wu 2005]
Quer :
Dat ’ Vs Display
ata Analysis
Region
Growing
Index _
< Region
TraCkl ng oog}z___po?g?:oa :0!322‘5!_9
FastBit provides \g

¢ Efficient subsetting
¢ Efficient region-growing
* Efficient region tracking

y

Evolution of ignition kernels (data from Sandia)
[Wu, Koegler, Chen, Shoshani 2003] f_"f_’_?] “"|
TR ——

Query Drive Visualization: Examples

¢ Find the ignition kernels in a
combustion simulation)

Find regions in space where
temperature > 800 and H,O,
concentration > 107 and ...

¢ Track a layer of exploding
supernova —) i
Tracking regions in space e,
where pressure gradient >
10000 and 2000 < density <
3000 and ...

[Stockinger, Shalf, Bethel, Wu 2005] ’\l A
l'__l'ﬂfl'l"

11 _

Use Case 2: Particles in Laser Wakefield

FastBit indexes track particles in Laser Wakefield Accelerator

Simulation 3 orders of magnitudes faster than previous methods

¢ To study the acceleration process, one selects the particles with the highest speed at
the end of the simulation

¢ Use FastBit indexes to directly to access these particles in earlier time steps with the
same identifiers, instead of brute-force comparisons

“* Hundreds of millions of particles are simulated, but only tens of thousands of

[Rubel et al. 2008]

. Selected particles from different time steps
X “ » speeds of particles are colored from blue to red
. gray dots are all particles from one time step

& < time progresses from left to right

Sy

‘ A
Freereer ’m

Etnnu:l.l:

Use Case 3: Molecular Docking

¢ Jochen Schlosser [schlosser@zbh.uni-hamburg.de]
Center for Bioinformatics, University of Hamburg

¢ Application: Structure-based virtual screening (ACS Fall 2007, JCIM 2009)

e,
Pl
nligands gr s Bl
.r._l.‘-::j-':'rf"."f""c‘- j.'ﬁ-l:-"
o F L
* ok 6%
One target
protein n docking Hit list
runs
Name Score
1bef -16,4
> Match Iigand 4dab-12,3
with cavity HEEAR
Standard approach: match every ligand with every target protein ~

New approach: using FastBit indexes to avoid brute-force matching r:r_—r>| ?

Use of FastBit for Molecular Docking

Method

¢ Describe shape of ligand with triangle
geometry

Types of interaction centers
Triangle side lengths
Interaction directions
80 bulk dimensions

“* Receptors

Receptor descriptors are generated
similarly

Using complementary information
where necessary

% Use of pharmacophore constraints on
receptor triangles

Reduces number of queries

Improved query selectivity because the
pharmacophore tends to be inside the
protein cavity

Indexed
compound
database

Thef -16,4
4dab -12,3
4d2a -11,6

r :Ij>| ’I]]I
IKELEY .

Use of FastBit for Molecular Docking

Method
** Indexing system attribute(i)
Properties of the problem:
Billions of descriptors (~ 1,000 for each

) desc1 (0
ligand) desc2 [0
. s . desc3 |0
High dimensional query desca |0
i . . desc5 |1
¢ Properties of bitmap indexes

Well suited for those kind of queries
Can be run stand alone

Further compression possible
FastBit uses compression

[] [n]

o O OO0
oo -=0
o - 000

Bitmap index

Results

“ TrixX-BMI is an efficient tool for virtual screening with average runtime in
sub-second range

“*screen libraries of ligands 12 times faster than FlexX without
pharmacophore constraints

+*With pharmacophore constraints, speedup 140 — 250 =

Frrererer |1

BEAKELE _

Introduction To FastBit

Outline
> John Wu
> Scientific Data Management

Berkeley Lab
» Bitmap indexes

>

http://sdm.Ibl.gov/fastbit A\I ‘;;;|

Basic Bitmap Index

“*First commercial version
Data by b1 by bs by bs Model 204, P. O°Neil, 1987
values “*Easy to build: faster than building B-trees
0 «*Efficient for querying: only bitwise logical
operations
A<2-b,ORDb,
A>2->b; ORb,OR b;
»Efficient for multi-dimensional queries

Use bitwise operations to combine the
partial results

“*Size: one bit per distinct value per row

Definition: Cardinality == number of
distinct values

Compact for low cardinality attributes,
say, cardinality < 100

Worst case: cardinality = N, number of
rows; index size: N*N bits
l'l"l'_l>| |||‘

17

SO 20000 O ld
NeNeNelEWeNe W) il
[SEsEsIEWeHesReNeN=] K
[SEsEsNsNesEEWeNeN-])
SEvNeleNeNeNeNeN=1]
[SEsNeNeNeNeEEWeN=] N

SN RANON=2WOG

>I
A
N
S
A
>

Strategies to Improve Bitmap Index

¢ Compression
Reduce the size of each individual bitmap

Best known compression method: Byte-aligned Bitmap Code
[Antoshenkov 1994], used in Oracle bitmap index

Word-Aligned Hybrid (WAH) code trades some disk space for much
more efficient query processing
¢ Encoding
Basic equality encoding, in Model 204
Multi-component encoding [Chan and loannidis 1998]
Multi-level encoding

¢ Binning
Equal-width binning, equal-depth binning, ...

Has to perform candidate check to rule out false positives, time for
candidate check dominates the total query response time

Order-preserving Bin-based Clustering (OrBiC)

Sy
) A
reereere|

1 8 HBrAxKcLey Lam

Indexing Option String

% Syntax
<binning ... /> <encoding ... /> <compression ... />
¢ Binning options
Basic binning option: linear scale, log scale, equal-weight
Examples:
<binning none/>
<binning nbins=1000/>
<binning begin=10, end=20, scale=linear, nbins=10/>
<binning precision=2/>
¢ Encoding options
Three basic options: equality, range and interval
Combinations:
multi-level, e.g., <encoding interval-equality/>
multi-component, e.g., <encoding equality ncomp=2/>
*»» Compression options
Public release only supports WAH compression, most users should leave
this part out

y

\

reerrer]

BERKELE .

o0

o0

Indexing Option Suggestions

Not specifying any option == default option
Use the default unless you known something about your data and query

The following recommendations primarily depends on the column cardinality
and the type of query

Definition: column cardinality == number of distinct values actually
appear in the data partition

Cardinality < 100:
Equality queries: <binning none/> <encoding equality/>
Range queries: <binning none/> <encoding interval/>
Cardinality < 1,000,000 (Nrows/10):
Have disk space (index size 2X raw data size):
<binning none/> <encoding interval-equality/>
Very high cardinality: <binning none/> <encoding binary/>

Small number of values to be queried: use them as bin boundaries, treat the
number of bins as the column cardinality above

y

freeerer |||'|

BERKELE -

Introduction To FastBit

Outline
>
>
>

John Wu

Scientific Data Management

Berkeley Lab

» Library interface

http://sdm.lbl.gov/fastbit

How Do I Use FastBit

+* Command-line tools

A handful of command-line tools are available to load data,
build indexes, and query data

But, most likely you will have to write some C/C++ code

¢ Write your own program using FastBit as a library

Two levels of API:

Class table
Class part + query

FastBit is written in C++
Other languages may access FastBit through C API

y

rrreerer |||'|

IR L _

FastBit Native Data Format

¢ A data table may be split into
multiple partitions

¢ Each partition is stored in a data
directory on the file system

¢ Each column has its own data file
(column organization)

¢ Each column has its own bitmap
index

¢ Each data partition has a metadata
file describing the partition
(example on the right)

BEGIN HEADER
DataSet.Name=testData
Number of rows=1000000
Number of columns=6
Table State=1

index = <binning none/>
END HEADER

BEGIN Column

name=19

description=integers 0, 1, ..., and 9
data type=Int

index = <encoding range/>

END Column

-

rerrrrr

BERKELEY Lam

FastBit Command-Line Tools

“* All source code for these tools are in examples directory

% Ardea: convert text version of the data records into FastBit raw
binary data format — an operation common known as “load”

Ardea —d output-dir —t text-file —m columnname:type
* Ibis: query existing data
Ibis —d data-dir —q “select c1,c2 where ¢3 > 5 and ¢4 < 6”

"y
Frrererer |||'|
.

Software Layering

«» Abstract view: ibis::table and ibis::tablex

A table 1s immutable; to add new records, use tablex
A query (through function select) produces another table

Additional functions include: build indexes, get conditional
histograms, get column values, ...

¢ Concrete view: ibis::part and 1ibis::query

Each part (partition) 1s vertically organized
An index for a column of a partition is built in memory

A query on partition produces a compressed bitmap
representing the rows satisfying the specified conditions

y

freeerer m"

_

Ingesting Data

% Uses ibis: : tablex, excerpt from examples/ardea. cpp

// create a tablex object
ibis::tablex™ ta = 1bis::tablex::create();
// parse the metadata string
ta->parseNamesAndTypes(metadata.c str());

// read CSV file, store content in memory
ierr = ta->readCSV(csvfiles[1], nrpf, del);

// write the content from memory to the named directory

29 ¢¢

ierr = ta->write(outdir, “name”, “some description");

y

rrreerer |||'|

Simple Queries
% Uses ibis: : table, excerpt from examples/thula. cpp

// create a table object from a directory name
ibis::table *tbl = 1bis::table::create(“directory-name”);
// a selection creates another table

29 ¢¢

ibis::table *res = tbl->select(“select clause™, “where clause™);
// create a cursor for row-wise access to the results
ibis::table::cursor *csr = res->createCursor();
// fetch the next row and dump it to std::cout
while (0 == csr->fetch())

csr->dump(std::cout);

y

reerrer] il

Low-Level Query Functions

¢ Uses ibis::part and ibis::query, excerpt from
examples/rara. cpp

// construct a data partition from a directory
ibis::part apart(argv[1], static cast<const char*>(0));
// create a query object with the current user name
ibis::query aquery(ibis::util::userName(), &apart);
// assign the query conditions as the where clause
int 1err = aquery.setWhereClause(argv[2]);
// select columns to print
ierr = aquery.setSelectClause(sel.c_str());
// evaluate the query
lerr = aquery.evaluate();
// print the selected values
aquery.printSelected(std::cout); "\] m|

28

Histogram Functions

¢+ Conditional histograms are commonly used in data analyses

Count the number of events collected every hour for all
events from a particular day (1-D)

Count the number of network connection attempts per minute
per destination port for a specific duration of time (2-D)

¢ Class ibis::part also has a set of functions to compute histograms
get1 DDistribution
get2DDistribution
get3DDistribution
May use regular bins or adaptive bins
May be weighted by another variable

+¢» FastBit uses indexes to reduce the amount of data accessed and
speeds up the histogram computations

29

Querying Long List of Values

“* A useful functionality for tasks such as tracking particles with ids
and do-it-yourself joins

¢ Directly construct a query expression with binary values;
bypassing the string parsing

Place the list of values in an std::vector<double>, say, vals
Constructor an ibis::qDiscreteRange
ibis::qDiscreteRange dr(“column—name” , vals);
¢ Set the where clause by directly using the query expression
aquery. setWhereClause (&dr) ;
¢ Evaluate the query as usual

aquery. evaluate () ;

y

Frrererer |||"

tli&(l.l

Index Sizes to Expect

“* Indexes are built for one column and one partition at a time

% The maximum size of an index is primarily determined by three
parameters: the number of rows N, the number of bitmaps used B, and
the bitmap encoding used.

“* The range and interval encoded indexes are not compressible in the
worst case, therefore their sizes are N * B bits

¢+ Under the equality encoding, for a binned index, B is the number of
bins, otherwise the number of bitmaps 1s the number of distinct values
(i.e., column cardinality)

For small B, say, B <100, N * B bits are needed because bitmaps
are likely not compressible

For B <N/ 10, the common case, index size is about 2 N words

¢ For columns with extremely high cardinality, use binary encoding,
which requires log B bitmaps and N * log B bits

31

Updating Data and Indexes

% Most efficient way to add new records is to add a partition to an
existing table

“* Modifying an existing row must be implemented as a deletion
following by an append

% Updating an index on a partition will cause a whole new index to
be written, which can take a long time compared to the time to
answer a query

*+ To improve response time, such updates are allowed to be
delayed, presumably till the system 1s no longer busy

y

Frrererer |||"

tli&(l.l

Parallelism

“* Using ibis::part and ibis::query, each parallel processing element
could work on one data partition
Additional code required to synthesize the final result

* Additional parallelism can come from having each processor
answer a part of a query

For a query involving “a > 2 and b < 3”, process the condition
involving a and b on two separate threads or processors

Require additional code to combine the partition results

¢ Prefer to have more partitions than the number of processors to
improve load balancing

¢ The original version of FastBit was a CORBA server program

Current code were the core of the multithreaded server, minus
the CORBA functions

All existing code should be thread-safe

-y

freeerer |||"
tﬂ'(tl-‘

EEm &
W) SC&RACﬂ e EE: : CENTER

ANY QUESTIONS?

More information at
http://sdm.lbl.gov/fastbit

Please join the FastBit mailing list

https://hpcrdm.lbl.gov/cgi1-bin/mailman/listinfo/fastbit-users

/J\l A

BrrxcLey Lamn] £

	0908-FastBit-CScADS-1
	0908-FastBit-CScADS-2
	0908-FastBit-CScADS-3
	0908-FastBit-CScADS-4
	0908-FastBit-CScADS-5
	0908-FastBit-CScADS-6
	0908-FastBit-CScADS-7
	0908-FastBit-CScADS-8
	0908-FastBit-CScADS-9
	0908-FastBit-CScADS-10
	0908-FastBit-CScADS-11
	0908-FastBit-CScADS-12
	0908-FastBit-CScADS-13
	0908-FastBit-CScADS-14
	0908-FastBit-CScADS-15
	0908-FastBit-CScADS-16
	0908-FastBit-CScADS-17
	0908-FastBit-CScADS-18
	0908-FastBit-CScADS-19
	Pages from 0908-FastBit-CScADS-20
	Pages from 0908-FastBit-CScADS-21
	Pages from 0908-FastBit-CScADS-22
	Pages from 0908-FastBit-CScADS-23
	Pages from 0908-FastBit-CScADS-24
	Pages from 0908-FastBit-CScADS-25
	Pages from 0908-FastBit-CScADS-26
	Pages from 0908-FastBit-CScADS-27
	Pages from 0908-FastBit-CScADS-28
	Pages from 0908-FastBit-CScADS-29
	Pages from 0908-FastBit-CScADS-30
	Pages from 0908-FastBit-CScADS-31
	Pages from 0908-FastBit-CScADS-32
	Pages from 0908-FastBit-CScADS-33
	Pages from 0908-FastBit-CScADS-34

